Leetcode 2928: Distribute Candies Among Children I

grid47
grid47
Exploring patterns and algorithms
Jan 19, 2024 5 min read

You are given two positive integers, ’n’ (number of candies) and ’limit’ (maximum number of candies each child can receive). Your task is to calculate how many different ways you can distribute ’n’ candies among 3 children such that no child receives more than ’limit’ candies.
Problem
Approach
Steps
Complexity
Input: You are given two integers: 'n' representing the total number of candies and 'limit' representing the maximum number of candies any child can receive.
Example: For n = 4 and limit = 2, the result will be 10.
Constraints:
• 1 <= n <= 50
• 1 <= limit <= 50
Output: Return the total number of valid ways to distribute the candies among the children such that no child receives more than 'limit' candies.
Example: For n = 3 and limit = 3, the output will be 10.
Constraints:
• The result will be a positive integer or zero, depending on the number of valid distributions.
Goal: The goal is to find all valid distributions of 'n' candies among 3 children such that no child gets more than 'limit' candies.
Steps:
• Iterate through all possible distributions of candies among the 3 children (i, j, k) where i + j + k = n.
• For each combination, check if i, j, and k are within the limit specified.
• Count all valid combinations and return the total.
Goal: The values for 'n' and 'limit' are relatively small, so brute force checking all combinations is feasible.
Steps:
• n and limit are both between 1 and 50.
• The total number of valid combinations can be computed by checking every possible distribution of candies.
Assumptions:
• It is assumed that n and limit are both positive integers within the specified ranges.
Input: Example 1: n = 5, limit = 2
Explanation: In this case, we are distributing 5 candies among 3 children, and no child can receive more than 2 candies. The valid distributions are: (1, 2, 2), (2, 1, 2), and (2, 2, 1), making the total number of ways = 3.

Input: Example 2: n = 4, limit = 2
Explanation: Here, we are distributing 4 candies among 3 children, where no child can receive more than 2 candies. The valid distributions are: (2, 1, 1), (1, 2, 1), (1, 1, 2), and permutations, which give a total of 10 ways.

Link to LeetCode Lab


LeetCode Solutions Library / DSA Sheets / Course Catalog
comments powered by Disqus