Leetcode 1442: Count Triplets That Can Form Two Arrays of Equal XOR
You are given an array of integers
arr
. We want to find the number of triplets (i, j, k)
where 0 <= i < j <= k < arr.length
, such that the bitwise XOR of elements between indices i
and j-1
(inclusive) equals the bitwise XOR of elements between indices j
and k
(inclusive).Problem
Approach
Steps
Complexity
Input: An array of integers `arr`.
Example: Input: arr = [4,5,6,7,8]
Constraints:
• 1 <= arr.length <= 300
• 1 <= arr[i] <= 10^8
Output: The number of triplets `(i, j, k)` that satisfy the given condition.
Example: Output: 2
Constraints:
• Output must be an integer representing the count of such triplets.
Goal: Identify and count all triplets `(i, j, k)` where the XOR of elements in the defined subarrays is equal.
Steps:
• Compute the prefix XOR for the array.
• Use nested loops to iterate through possible values of `i` and `j`.
• Check if the prefix XOR for the subarrays defined by `(i, j, k)` are equal.
• If they are equal, count the number of valid `k` values for that `(i, j)`.
Goal: Ensure the solution efficiently handles the constraints.
Steps:
• Avoid nested loops with excessive iterations to reduce computational overhead.
• Use properties of XOR to simplify comparisons.
Assumptions:
• The input array `arr` is non-empty.
• The integers in `arr` are positive.
• Input: Input: arr = [4,1,2,3,4]
• Explanation: The triplets are (0,1,2) and (2,3,4), where the XOR conditions are satisfied.
Approach: Utilize prefix XOR to simplify comparisons of subarray XOR values. Iterate through the array to count valid triplets.
Observations:
• XOR has useful properties: `x ^ x = 0` and `x ^ 0 = x`.
• Prefix XOR allows us to compute XOR of subarrays efficiently.
• If prefix[i] == prefix[j], then XOR from i to j-1 is 0.
Steps:
• Compute a prefix XOR array where prefix[i] represents the XOR of elements from the start to index `i`.
• Use nested loops to iterate through indices `i` and `j`.
• Check if `prefix[i] == prefix[j]`. If true, increment the result by the number of valid `k` values (j - i - 1).
• Return the total count of triplets.
Empty Inputs:
• Input: arr = [] -> Output: 0
Large Inputs:
• Input: arr of length 300 with random values -> Should run within time constraints.
Special Values:
• Input: arr = [1,1,1,1,1] -> Output: 10, as all triplets are valid.
Constraints:
• Prefix XOR should handle large numbers up to 10^8.
int countTriplets(vector<int>& nums) {
int res = 0, n = nums.size();
vector<int> arr(n+1,0);
for(int i = 1; i < n + 1; i++)
arr[i] = arr[i -1] ^ nums[i-1];
for(int i = 0; i < n+1; i++) {
for(int j = i + 1; j < n+1; j++)
if(arr[i] == arr[j])
res += j - i- 1;
}
return res;
}
1 : Function Definition
int countTriplets(vector<int>& nums) {
Defines the function `countTriplets`, which takes a reference to a vector `nums` containing integers and returns the count of triplets that satisfy the XOR condition.
2 : Variable Initialization
int res = 0, n = nums.size();
Initializes the result variable `res` to 0 (which will hold the number of valid triplets) and calculates the size of the `nums` array (`n`).
3 : Prefix Array Initialization
vector<int> arr(n+1,0);
Creates a vector `arr` of size `n+1` to store prefix XOR values. It is initialized to 0, and `arr[i]` will store the XOR of elements from the start to index `i-1`.
4 : Prefix XOR Calculation
for(int i = 1; i < n + 1; i++)
Starts a loop to calculate the prefix XOR of the `nums` array and store the results in the `arr` vector.
5 : XOR Calculation
arr[i] = arr[i -1] ^ nums[i-1];
For each index `i`, updates `arr[i]` to the XOR of `arr[i-1]` (previous prefix XOR value) and the current element `nums[i-1]`.
6 : Outer Loop
for(int i = 0; i < n+1; i++) {
Starts an outer loop from index `i=0` to `i=n` to compare the prefix XOR values and find the triplet matches.
7 : Inner Loop
for(int j = i + 1; j < n+1; j++)
Starts an inner loop from index `j=i+1` to `j=n` to compare the XOR values between the indices `i` and `j`.
8 : XOR Comparison
if(arr[i] == arr[j])
Checks if the XOR of the elements from index `i` to `j-1` equals the XOR of the elements from index `j` to the end, indicating a valid triplet.
9 : Result Update
res += j - i- 1;
If the XOR values at indices `i` and `j` match, it adds `j - i - 1` to the result `res`, counting the number of valid triplets between `i` and `j`.
10 : Return Statement
return res;
Returns the final count of valid triplets stored in the `res` variable.
Best Case: O(n^2)
Average Case: O(n^2)
Worst Case: O(n^2)
Description: Nested loops iterate through pairs of indices, leading to quadratic complexity.
Best Case: O(n)
Worst Case: O(n)
Description: The prefix XOR array requires linear space.
LeetCode Solutions Library / DSA Sheets / Course Catalog |
---|
comments powered by Disqus