Leetcode 1139: Largest 1-Bordered Square

grid47
grid47
Exploring patterns and algorithms
Jul 16, 2024 7 min read

Given a 2D grid of 0s and 1s, return the number of elements in the largest square subgrid that has 1s on its border and 0s inside. If no such subgrid exists, return 0.
Problem
Approach
Steps
Complexity
Input: You are given a 2D grid, where each element is either 0 or 1.
Example: Input: grid = [[1, 1, 1], [1, 0, 1], [1, 1, 1]]
Constraints:
• 1 <= grid.length <= 100
• 1 <= grid[0].length <= 100
• grid[i][j] is 0 or 1
Output: Return the number of elements in the largest square subgrid with 1s on its border and 0s inside.
Example: Output: 9
Constraints:
• The output will be an integer representing the area of the largest square subgrid.
Goal: Find the largest square subgrid with all 1s on its border and 0s inside.
Steps:
• 1. Use dynamic programming to calculate the largest possible square that can be formed at each point.
• 2. Check the border elements of possible square subgrids to ensure they meet the condition of having 1s along the borders.
• 3. Return the area of the largest valid square found.
Goal: The problem must handle grids of size up to 100x100 efficiently.
Steps:
• 1 <= grid.length <= 100
• 1 <= grid[0].length <= 100
• grid[i][j] is either 0 or 1
Assumptions:
• The grid contains only 0s and 1s.
• We are looking for squares where the border consists of 1s and the inside is filled with 0s.
Input: Input: grid = [[1, 1, 1], [1, 0, 1], [1, 1, 1]]
Explanation: In this example, the largest square with all 1s on its border is the entire 3x3 grid, which has 9 elements.

Input: Input: grid = [[1, 1, 0, 0]]
Explanation: Here, the only valid square is the top-left corner, which is a 1x1 square with 1 on its border, giving an output of 1.

Link to LeetCode Lab


LeetCode Solutions Library / DSA Sheets / Course Catalog
comments powered by Disqus